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A method is presented, which permits automatic optimization of the space arrangement of two 
interacting molecules. The Buckingham potential is assumed and the optimization is performed 
by minimization of the interaction energy by the variable metric method making use of explicit 
formulas for the first derivatives of energy. A coordinate system used permits a straightforward 
generalization to clusters of any number of interacting molecules. 

Empirical interaction potentials are widely used for estimations of intra- and intermolecular 
interaction energies, in particular in searching for the optimal conformation of a molecular 
skeleton1 or in studies of clusters containing two or more molecules2

. Among the many successful 
conformational studies let us recall the estimation of the torsion angle in biphenyl3

, racemization 
of ortho-substituted biphenyls4 , and the studies of alicyclic compounds by Hendrickson5

•6 . 

These results suggested to us that it might be reasonable to apply the empirical potentials to 
studies of molecular complexes, particularly in the gas phase. 

All applications of empirical potentials mentioned above involve a common initial step, viz. 
the search for a configuration of atoms in a molecule or molecules in a cluster in which the energy 
is at minimum with respect to all coordinates of the system. The most widely used way of energy 
minimization is based on the tabulation of the energy function for discrete values of coordinates. 
This procedure cannot be considered entirely satisfactory because of both the extent of necessary 
calculations and the accuracy achieved. A more elegant approach to the minimization problem 
was reported by Wiberg7 , who constructed the first derivatives of energy from equidistant shifts 
of all atomic coordinates; a subsequent approach to the optimum was generated by the steepest 
descent method. 

This paper presents a method permitting optimization of the space arrangement of 
two molecules for the Buckingham-type interaction potential1 on the basis of accurate 
first derivatives of energy. The procedure makes use of the iterative variable metric 
method, which was introduced into the theoretical chemistry by Mciver and Komor­
nicki8 for purposes of automatic geometry optimization by semiempirical quantum 
chemical methods. . 
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POTENTIAL USED 

For the case of two interacting molecules of N 1 and N 2 atoms the Buckingham 
potential possesses the following form 1 : 

Nt N2 

V = I I - cl]l(R? + RJ)6/R~i + cgl exp ( -c(3JRd(R? + RJ)). (I) 
i=1 j=l 

Here C~}l, cgl, and c< 3l are empirical constants, R?, RJ atomic van der Waals radii, 
Ru the distance between the i th atom of the one molecule and the j th atom of the 
other. Hence, potential (I) is a function of N 1 . N 2 variables Rii. 

COORDINATE SYSTEM 

It is convenient to use as small a coordinate basis set as possible, i.e. to limit oneself 
to a set of independent coordinates. Let us assume that the geometry ~f any of inter­
acting molecules is identical with that of the isolated molecule. Provided the two 
rigid molecules are nonlinear, their mutual orientation can unambigously be deter­
mined by means of mere six inpependent parameters, in contrast toN 1 • N 2 variables 
appearing in Eq. (I). In order to have a facile insight into the course of the interaction, 
it is desirable that the six parameters be so chosen as to have a simple geometrical 
meaning. 

Let the molecule 1 be fixed in the coordinate system x< 1l/l)z(1l, the molecule 2 
in the system x< 2ly<2lz(2). The atomic coordinates in the respective fixed coordinate 
systems remain unchanged in the course of optimization. The arrangement of the 
two systems relative to each other varies, of course, and can be described by means 
of the following terms: 

I. x0 , y 0 , z0 denoting the origin of the x< 2l/2 lz<2l system in the x<1ly<1lz<1l system. 

II. Euler angles 8, cp, x, being determined by the x< 1ly<1lz<1l and x< 2 ly<2 lz<2 l axes 
and defined as in ref. 9 • 

The coordinates of any atom of the molecule 2 in the x(1ly<1lz< 0 system can be 
expressed by means of its known coordinates in the x<2l/2 lz<2 l system and variables 
Xo, Yo, Zo, 8, cp, and x; the formulas are listed in Appendix. 

GRADIENT OF THE INTERACTION ENERGY AND THE ITERATIVE PROCEDURE 

Derivatives of potential (I) with respect to variables x 0 , y0 , z0 , 8, cp, and X are com­
ponents of the gradient of interaction energy 

(2) 

and are given by the expression such as 
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N1 Nz 

avjaxo = I I (avjaRij) (oRufoxo). (3) 
i=l j=l 

Their explicit formulas (see Appendix) in conjugation with a suitable iteration tech­
nique permit an effective search for points on hypersurface (1) with zero first deriva­
tives. 

Let q; denote a vector of x 0 , y0 , z0 , 8, cp, and x parameters given in the i th iteration 
and gi the respective gradient (2). Then the (i + l)th approach to the optimal six 
parameters is given by the recursion formula8

•
10 

(4) 

Ai is a square matrix constructed according to recursion formulas given in ref. 10 and 
which converges to the inverse matrix of second derivatives, !Xi is a damping factor 
so chosen as to ensure positive-definiteness of the matrix of second derivatives10

. 

From qi+l given by Eq. (4) gi+l is constructed and relationship (4) is applied in 
a next step unless a required convergency criterion has already been satisfied. 

APPLICATIONS AND CONCLUSIONS 

A computer program was written for the relationships derived and used for a study 
of a series of selected systems. The parameter sets adopted for potential (I) were 
those of Eliel and collaborators1 and Kitaygorodsky 11

. 

In agreement with what was claimed8 the variable metric method was found highly 
effective. Since the variable metric method leads to the nearest minimum and preserves 
the symmetry of the starting geometry, determination of all minima on the energy 
hypersurface (1) requires the systematic variation of the starting geometry. Even 
with relatively simple systems, the hypersurface (I) may possess a series of energy 
minima. Treatment of the interaction of F 2 and C2H4 , in which the parameter set 
of ref. 1 was used, gave 10 stationary points with very close values of interaction ener­
gy. In the case with the system of 12 and C6H 6 , both parametrizations yielded 9 statio­
nary points in close correspondence. 

The formalism employed permits a straightforward generalization of the automatic 
optimization to systems containjng N interacting molecules; in this case 6(N-1) 
coordinates are to be optimized. 

APPENDIX 

First Derivatives of the Buckingham Potential with Respect to Variables x 0 , Yo, z0 , 9, ({J, X 

Let us introduce the following notation: 

xpl, ypl, zPl denote the Cartesian coordinates of the ith atom of the first molecule in the 
x< 1l y<ll z<1l system fixed with the first molecule 

Collection Czechoslov. Chern. commun. (Vol. 391 (1974) 



3190 Slanina: 

x)2l, yfl, zfl denote the Cartesian coordinates of the jth atom of the second molecule in the 
x<2 l y< 2 l z<2 l system fixed with the second molecule 

x)1>, y)1l, z)1l denote the Cartesian coordinates of the jth atom of the second molecule in the 
x<1l y<1l z<1l system. 

It holds9 

x)1l = x0 + x)2 l (cos 8 cos (/1 cos x- sin (/1 sin x)- y)2 l (cos 8 cos (/1 sin x + sin (/1 cos x) + 
+ z)2 l sin 8 cos (/1 (5) 

y)1l =Yo+ x)2 l (cos 8 sin (/1 cos x + cos (/1 sin x) + y)2 > (-cos 8 sin (/1 sin x + cos (/1 cos x) + 

+ z)2l sin 8 sin (/1 (6) 

z)1) = z0 - x)21> sin 8 cos x + y)2 l sin 8 sin x + z)2 l cos 8. (7) 

In terms x</l, y)1l, z)1l given by (5), (6), (7), the first derivatives of the Buckingham potential 
(I) can be expressed by the following concise formulas: 

N1 N2 

oVfoxo = L L V[ix)l>- x[l>) 
i=l j=l 

N1 N2 

oVfoy0 = L: L: Vf/Y)1l- yp>). 
i=l j=l 

Nt N2 

oVf6zo = L L V[j(z)1l- zP)) 
i=l j=l 

N1 N2 

oVjo8 = L: L: V{/Cx)1l- xF>)(-x)2 l sin 8 cos (/1 cosx + y)2 > sin 8 cos (/1 sinx + 
i=l j=l 

(8) 

(9) 

(10) 

+;}2 ) cos 8 cos (/1) + (y)1l- ypl) ( -x)2 l sin 8 sin (/1 cos x + y)2 l sin 8 sin (/1 sin x + 
+ z)2 l cos 8 sin (/1) + (z)1) - zP)) ( - x)2 l cos 8 cos x + y)2 ) cos 8 sin x - z)2 l sin 8)) 

Nt N2 

iJVfo(/1 = L: L: V[/(x(t)- xp>)(-x(2 l (cos 8 sin (/1 cos x +cos (/1 sinx) + 
i=1j=1 J J 

+ //l(cos 8 sin (/1 sin x- cos (/1 cos x)- z]Z) sin 8 sin (/1) + (y)1l- Yll)) . 

. (x)2 l(cos 8 cos (/1 cos x- sin (/1 sin x) -

- y)2 > (cos 8 cos (/1 sin x + sin (/1 cos x) + z)2 l sin 8 cos (/1)) 

Nt N2 

iJVfox = L: L: V[/(x)1
)- x~ 1 >)(-x)2 l(cos 8 cos (/1 sin x +sin (/I cos x) + 

i=l j=l 

+ y)2l( -cos 8 cos (/1 cos x + sin (/1 sin x)) + 

+ (y)1l- yp>) (x)2l( -cos 8 sin (/1 sin x + cos (/1 cos x)- y)2 >(cos 8 sin (/1 cos x + 

(11) 

(12) 

+ cos (/1 sin x)) + (zjll- z<ll) (x)Zl sin 8 sin x + y)2 l sin 8 cos x)) . (13) 

¥[1 appearing in (8)-(13) has the following meaning 

V{j = 6 cfJ><R? + R~)6/Rr1 - Cfj>c<3 lj(Ru(R? + RJ)) exp(-C(J) Rij/(R? + RJ)). (14) 
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Distance between the ith and jth atoms is 

Ru = ((xpl _ x)1l)2 + (y\1) _ y)1l)2 + (z\1l _ z)1l)2)1/2. (15) 
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